Search results for "Riemann–Hurwitz formula"

showing 3 items of 3 documents

Extremal properties of the determinant of the Laplacian in the Bergman metric on the moduli space of genus two Riemann surfaces

2005

We study extremal properties of the determinant of the Laplacian in the Bergman metric on the moduli space of compact genus two Riemann surfaces. By a combination of analytical and numerical methods we identify four non-degenerate critical points of this function and compute the signature of the Hessian at these points. The curve with the maximal number of automorphisms (the Burnside curve) turns out to be the point of the absolute maximum. Our results agree with the mass formula for orbifold Euler characteristics of the moduli space. A similar analysis is performed for the Bolza's strata of symmetric Riemann surfaces of genus two.

Mathematics(all)General MathematicsRiemann surface010102 general mathematicsMathematical analysis01 natural sciencesModuli spaceRiemann–Hurwitz formulaModuli of algebraic curvesRiemann Xi functionMathematics - Spectral Theorysymbols.namesakeRiemann problemMathematics::Algebraic GeometryGenus (mathematics)0103 physical sciencesFOS: Mathematicssymbols14H15010307 mathematical physics0101 mathematicsSpectral Theory (math.SP)Bergman metricMathematicsMathematische Zeitschrift
researchProduct

Algebraic Curves and Riemann Surfaces in Matlab

2010

In the previous chapter, a detailed description of the algorithms for the ‘algcurves’ package in Maple was presented. As discussed there, the package is able to handle general algebraic curves with coefficients given as exact arithmetic expressions, a restriction due to the use of exact integer arithmetic. Coefficients in terms of floating point numbers, i.e., the representation of decimal numbers of finite length on a computer, can in principle be handled, but the floating point numbers have to be converted to rational numbers. This can lead to technical difficulties in practice. One also faces limitations if one wants to study families of Riemann surfaces, where the coefficients in the al…

Moduli of algebraic curvesAlgebraRiemann–Hurwitz formulaRiemann hypothesissymbols.namesakeGeometric function theoryRiemann surfaceComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONAlgebraic surfacesymbolsRiemann's differential equationBranch pointMathematics
researchProduct

Euler Characteristics of Moduli Spaces of Curves

2005

Let ${mathcal M}_g^n$ be the moduli space of n-pointed Riemann surfaces of genus g. Denote by ${\bar {\mathcal M}}_g^n$ the Deligne-Mumford compactification of ${mathcal M}_g^n$. In the present paper, we calculate the orbifold and the ordinary Euler characteristic of ${\bar {\mathcal M}}_g^n$ for any g and n such that n>2-2g.

euler characteristicPure mathematicsModular equationApplied MathematicsGeneral MathematicsRiemann surfaceMathematical analysisModuli spaceModuli of algebraic curvesRiemann–Hurwitz formulasymbols.namesakeMathematics - Algebraic GeometryMathematics::Algebraic GeometryEuler characteristicGenus (mathematics)symbolsFOS: Mathematicsmoduli spaceAlgebraic Topology (math.AT)Compactification (mathematics)Settore MAT/03 - GeometriaMathematics - Algebraic TopologyAlgebraic Geometry (math.AG)Mathematics
researchProduct